
BigBIRD: A Large-Scale 3D Database of Object Instances

Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel

Abstract— The state of the art in computer vision has rapidly
advanced over the past decade largely aided by shared image
datasets. However, most of these datasets tend to consist of
assorted collections of images from the web that do not include
3D information or pose information. Furthermore, they target
the problem of object category recognition—whereas solving the
problem of object instance recognition might be sufficient for
many robotic tasks. To address these issues, we present a high-
quality, large-scale dataset of 3D object instances, with accurate
calibration information for every image. We anticipate that
“solving” this dataset will effectively remove many perception-
related problems for mobile, sensing-based robots.

The contributions of this work consist of: (1) BigBIRD,
a dataset of 100 objects (and growing), composed of, for
each object, 600 3D point clouds and 600 high-resolution
(12 MP) images spanning all views, (2) a method for jointly
calibrating a multi-camera system, (3) details of our data
collection system, which collects all required data for a single
object in under 6 minutes with minimal human effort, and
(4) multiple software components (made available in open
source), used to automate multi-sensor calibration and the
data collection process. All code and data are available at
http://rll.eecs.berkeley.edu/bigbird.

I. INTRODUCTION AND RELATED WORK

Object recognition, the task of identifying a given object in
an image, remains an unsolved problem in computer vision.
Researchers typically dichotomize object recognition into (1)
category-level recognition, where various concrete objects
are assigned a single label (e.g. “Pepsi can” and “Coke can”
are both assigned the label “soda can”) and (2) instance-
recognition, where each concrete object is assigned a sepa-
rate label (e.g. “Pepsi can” and “Coke can” are given separate
labels). The computer vision and robotics approaches to the
recognition problem differ fundamentally in that (1) robots
in fixed environments typically need to interact with on the
order of a few hundred objects and (2) robotic perception
algorithms need to successfully localize and detect 3D object
poses in addition to identifying the correct object. We believe
that instance recognition suits many robotic tasks well, as
joint object detection and pose estimation are the primary
components of the instance recognition problem.

Though the advent of commodity RGB-D sensors, such
as the Microsoft Kinect, aid in addressing 3D pose detection
and localization by providing a depth channel in addition
to a color channel, instance recognition systems still cannot
reliably detect hundreds of objects [1], [2], [3]. We believe
that the primary issue currently hampering progress towards
reliable and robust instance recognition is the lack of a large-
scale dataset containing high-quality 3D object data; this

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709

Fig. 1. Our data-collection system. We place the object near the center of
the turntable, and our software takes care of the rest. Note the chessboard
on the turntable to merge clouds as the turntable moves. Sample objects
from the dataset can be seen sitting on top of the Ortery Photobench.

is because collecting such a dataset requires constructing a
reliable and high-quality 3D scanning system, which is a
significant undertaking.

A. Datasets

The last decade has witnessed rapid advances in computer
vision largely due to fundamental image datasets, such as
MNIST, Caltech-101, PASCAL, Labeled Faces in the Wild,
PASCAL, and most recently, ImageNet [4], [5], [6], [7],
[8], [9]. Unfortunately, the solution to most current 2D
vision datasets would not constitute a solution to instance
recognition as they currently target image retrieval tasks from
arbitrary images drawn from the web. In particular, while
some of these tasks emphasize detection, they do not directly
address the problem of pose estimation, a component crucial
to attaining high performance in instance recognition and
robotic tasks. While there exist several 3D vision datasets,
most datasets either (1) have few objects, (2) have low-
quality objects, (3) provide only single views of objects or
scenes, (4) don’t contain calibration and pose information, or
(5) provide low-resolution RGB data [10], [11], [12], [13],
[14], [15]. While addressing all five aspects would improve
the quality of instance recognition systems, aspect (5) would
also provide a venue to explore synergies and comparisons

between Kinect-style and multi-view stereo approaches to
3D model construction [16], [17], [18].

Furthermore, although most recent instance recognition
systems work with RGB-D data, there exist high-quality
instance recognition systems that use only RGB images,
such as MOPED, presented by Collet et al. [19]. However,
these generally work with higher-quality RGB images than
those provided by RGB-D sensors. Unfortunately, this makes
it quite difficult to compare RGB-D instance recognition
systems with RGB-only systems, as simply applying the
RGB-only systems to the images from RGB-D datasets
would yield unrepresentative results. Because we provide
high-quality RGB images in addition to the RGB-D data,
we can enable meaningful comparison of these systems.

The closest work to ours is that of Kasper et al. [20]. They
have a similar setup in which a laser scanner collects 3D
data and a stereo pair collects data from 360 points from the
viewing hemisphere. They also provide object meshes and
calibrated RGB data. However, their 3D data collection setup
is only semi-automated and their image collection setup takes
an additional 20 minutes. Although they provide a relatively
large number of objects (roughly 130 at the time of writing),
scaling up to thousands may be infeasible at that speed. Our
approach is fully automated after placing the object in the
system, and data collection takes less than 5 minutes per
object.

B. Data Collection

The chief obstacle to collecting a high-quality large-scale
object dataset involves constructing a reliable 3D scanning
system that can provide both high-quality depth and color in-
formation. Most commercial 3D scanners either provide only
range sensor and low-resolution color information and/or are
very expensive. Recent work demonstrates that KinectFu-
sion variants can provide high-quality 3D reconstructions
[21], [22], [23], [24]. However, some of these approaches
don’t provide calibrated RGB images, which are required
by many instance recognition platforms, and those that do
only provide low-resolution RGB images from the Kinect
sensor. Further, the data collection process requires a human
to slowly move a Kinect around the full object; even with
an automated turntable, a single Kinect attached to an arm
cannot image non-convex objects and translucent/transparent
objects due to the inherent limitations of Kinect-style RGB-
D sensors.

Using multiple Kinects and high-resolution DSLR cameras
along with an automated turntable constitutes one possible
approach to jointly reducing human effort while improving
RGB-D mesh quality. The presence of multiple types of
sensors determines highly accurate intrinsics for each sensor
as well as relative transformations between pairs of sensors.
Researchers have extensively studied this problem for both
single and multiple 2D cameras and have recently explored
it for single and multiple RGB-D sensors [25], [26], [27],
[28], [29], [30], [31]. Typical approaches involve first cal-
ibrating each sensor individually to compute its intrinsics,
computing stereo pairs between sensors to estimate each

sensor’s extrinsics, and then running a joint optimization
procedure to refine each sensor’s intrinsics and extrinsics.
For calibrating RGB-D sensors, many approaches require
additional hardware and/or setup from what is required
for 2D cameras. For example, Herrera et al. [25] present
a method that requires affixing a chessboard to a large,
flat plane, whereas typical 2D approaches simply require a
chessboard alone. Our method requires a source of infrared
light, but no additional hardware setup.

Additionally, interference between IR patterns complicates
constructing a data-collection system with multiple RGB-D
sensors. Butler et al. [32] propose an approach for mitigating
interference from multiple depth sensors. However, their
approach requires affixing a vibrating motor to each device,
which makes a static calibration procedure impossible and
also introduces more complexity into the system. We em-
ploy time-multiplexing, another common approach, which
involves turning off each camera when it is not taking a
picture. Concretely, rather than turning off the depth stream,
we turn off the infrared emitter, which is roughly two times
faster.

C. Contributions

To address the issues described above, we present the
following contributions:

1) A dataset which addresses the various shortcomings of
existing 2D and 3D datasets by providing the following
data per object: (1) 600 Kinect-style RGB-D images,
(2) 600 high-resolution images, (3) accurate calibration
information for every image, (4) segmented objects
per image, and (5) full-object meshes. We obtain 600
images by taking shots from 5 polar angles and 120
azimuthal angles, the latter equally spaced by 3◦.

2) A method for jointly calibrating multiple RGB-D sen-
sors and cameras.

3) Details of our data collection system, which can collect
all required data for a single object in under 6 minutes,
where the only human effort required involves placing
an object on the turntable and running a single com-
mand.

4) Multiple software components, including software for
calibrating a single depth sensor, software for jointly
calibrating multiple sensors (RGB-D and 2D RGB),
and tools to simplify the data collection process.

In addition to helping to solve the instance recognition
problem, we believe that our dataset removes many obstacles
associated with large-scale 3D data and serves as a unified
dataset that bridges problems in graphics, computer vision,
and robotics. Our dataset can be used for benchmarks in
multiple areas, such as 3D mesh reconstruction (with and
without RGB-D), instance recognition, and object catego-
rization. We intend to continually add to our dataset, inviting
others to request and/or send us objects for which we have
not yet collected data. Test scenes and results will be made
available as well.

All data and code are available and regularly updated at the
following URL: http://rll.eecs.berkeley.edu/

Fig. 2. Carmine mounted to Canon T3 using RGBDToolkit mount.

Fig. 3. Side view of all Carmines mounted to respective Canon T3s, pointed
at the Ortery Photobench. The dimensions of the Photobench are 31” D x
26”H x 26” W.

bigbird. Available code includes a robust checkerboard
detector, calibration software for a single RGB-D sensor,
multi-sensor calibration, and various utilities for working
with depth sensors and point clouds in Python.

II. SYSTEM OVERVIEW

The sensors in our system comprise of 5 high resolution
(12.2 MP) Canon Rebel T3 cameras and five PrimeSense
Carmine 1.08 depth sensors. We mount each Carmine to one
of the T3s using a mount designed by RGBDToolkit [33], as
shown in Figure 2. Each T3 is then mounted to the Ortery
MultiArm 3D 3000.

We place each object on the turntable in the Ortery
Photobench 260. The Photobench contains a glass turntable,
which can be rotated in units of 0.5 degrees. It also has four
lights, consisting of 4000 LEDs, located at the bottom, the
back wall, the front corners, and the back corners. Using a
reverse-engineered driver, we can programmatically control
the lighting and rotation of the turntable.

To obtain calibrated data, we place a chessboard on the
turntable; the chessboard is always fully visible in at least
one of the cameras, specifically the Canon and Carmine
directly above the turntable (see 3). We refer to Carmine
as the reference camera. After calibrating all of the cameras

to find the transformations from each camera to the reference
camera, we can provide a good estimate of the pose for every
image.

For each object, we capture images with each camera at
each turntable position. We rotate the turntable in increments
of 3 degrees, yielding a total of 600 point clouds from the
Carmines and 600 high-resolution RGB images from the
Canon T3s. We then estimate poses for each camera, segment
each cloud and generate segmentation masks for each of the
600 views, and produce a merged cloud and mesh model.

Automation and speed are crucial to enabling large-scale
data collection; a significant amount of engineering is re-
quired to make the process as fast as possible.

Our system runs the following steps when collecting data
for a single object:

1) Start the depth and color stream for each Carmine.
Turn off the infrared emitter for each Carmine.

2) Repeat for each turntable orientation (every 3 degrees,
120 total orientations):

a) Start a thread for each Canon T3 that captures an
image.

b) Start a thread for each Carmine that captures a
color image.

c) Start a single thread that loops through each
Carmine, turning on the infrared emitter, cap-
turing a depth map, and turning off the infrared
emitter in sequence.

d) Once all of the above threads are done executing
in parallel, rotate the turntable by 3 degrees.

Using all Carmines simultaneously causes the projected
infrared patterns to interfere, leading to severe degradations
in data quality. One option involves stopping the depth stream
for each device not taking a depth image, and restarting the
depth stream immediately before taking an image. However,
stopping and starting a depth stream takes roughly 0.5s,
imposing a 5 minute minimum bound on collecting 120
images with each of the 5 cameras. Rather than stopping
the entire stream, we modified the OpenNI2 library to allow
turning off the infrared emitter while keeping the depth
stream open, which takes 0.25s. We present detailed timing
breakdowns in Table I.

We now discuss how we jointly calibrate the sensors.

III. CALIBRATION

The 10 sensors are situated in a quarter-circular arc, with
each Carmine mounted to a Canon T3, and each Canon T3
mounted to the arm. One of the overhead cameras, referred
to as the reference camera, can always see the chessboard
affixed to the turntable; specifically, we use the overhead
Carmine. In order to recover the pose of all of the other
sensors, we must estimate the transformation from each
sensor to the reference camera.

Kinect-style RGB-D sensor calibration involves estimating
the intrinsic matrix for the infrared (IR) camera, the intrinsic
matrix for the RGB camera, and the extrinsic rigid transform
from the RGB camera to the infrared camera. Highly accu-
rate calibration is crucial to achieving strong depth-to-color

Step Time (s)
Startup

Ortery Photobench Startup 3.5
Carmine Startup (depth and color) 9.3

Capture at each turntable position (done 120 times)
Capture images – performed in parallel 1.82

Capture Canon T3 images (all 5 in parallel) 1.2
Capture Carmine color (all 5 in parallel) 0.07
Capture Carmine depth (all 5 in sequence) 1.82

Rotate turntable 0.48
Total capture time 276
Shutdown 0.49
Total time for one object 289

TABLE I
TIMING INFORMATION FOR THE DATA-COLLECTION PROCESS. NOTE

THAT THE THREE IMAGE CAPTURE THREADS ALL RUN IN PARALLEL,
WHICH MEANS THAT THE IMAGE CAPTURE STEP TAKES AS LONG AS THE

LONGEST PROCESS.

registration. In our system, we not only need to calibrate
the intrinsics of each individual RGB-D sensor, but also the
extrinsics which yield the relative transformations between
each of the 10 sensors, both RGB-D and RGB.

Accurate calibration also enables registering depth maps
to different RGB images, including the higher-resolution
1280x1024 image provided by the Carmine (hardware reg-
istration only works when the color stream is at the same
resolution as the 640x480 depth stream). Although this is a
relatively well-studied problem [30], [25], obtaining strong
results is still nontrivial due to multiple details about the
Carmines that are not well documented.

Our method requires an external infrared light and a
calibration chessboard. At a high level, we take pictures of
the chessboard with the high-resolution RGB camera and the
RGB-D sensor’s infrared camera and RGB cameras1, as well
as a depth map. We then detect the chessboard corners in all
of the images. Note that we turn off the infrared emitter
before collecting infrared images, and turn it back on before
collecting depth maps.

After collecting data, we first initialize the intrinsic ma-
trices transformations for all fifteen cameras (five Canon
T3s, five Carmines with an RGB camera and IR camera
each) using OpenCV’s camera calibration routines, based on
the simple calibration method proposed by Zhang [28]. We
also initialize the relative transformations between cameras
using OpenCV’s solvePnP. We then construct an optimization
problem to jointly optimize the intrinsic parameters and
extrinsic parameters for all sensors.

A. Joint Optimization

We use an approach similar to that given by Le and
Ng [29]. Their approach requires that all sensors be grouped
into 3D systems. A stereo pair of cameras (RGB or IR)
yields one kind of 3D system (a stereo system), and a RGB-
D sensor’s infrared camera and projector yield the other (a

1It is vital that the Carmine and chessboard remain completely still while
both images are captured, as it is not possible to simultaneously take a color
and infrared image.

RGBD system). Each 3D system has intrinsic parameters,
used to produce 3D points, and extrinsic parameters, used to
transform 3D points into another system’s coordinate frame.
We construct and solve the optimization problem using Ceres
Solver [34].

The calibrator optimizes the intrinsic and extrinsic param-
eters such that 1) each 3D system produces 3D points that
match the physical characteristics of the chessboard (e.g. the
points are all planar, the points on a given chessboard row
are linear, and the distance between generated 3D points
match up with the true distance on the chessboard) and 2)
all 3D systems agree with each other on the locations of the
chessboard corners.

The intrinsic parameters of a RGBD 3D system consist
of the intrinsic matrix K and distortion parameters of the
sensor’s IR camera. The intrinsic parameters of a stereo
3D system consist of the intrinsic matrices and distortion
parameters of each camera, along with the rotation and
translation from one camera to the other.

The loss function is given by

G =
∑
s∈S

∑
u∈U

I(s, u) +
∑

s1,s2∈S
E(s1, s2, u)

where I denotes the intrinsic cost, E denotes the extrinsic
cost, S denotes the set of all 3D systems and U denotes the
calibration data (i.e. the chessboard corners).

Let Q(s, ui) be a function that produces a 3D point for
the corner ui using the intrinsic parameters of system s. For
a stereo system, this entails triangulation, and for an RGBD
system, this is simply converting image coordinates to world
coordinates using the depth value provided by the sensor.

For a 3D system, the intrinsic cost is given by

I(s, ui) =
∑
uj∈U

(||Q(s, ui)−Q(s, uj)|| − dij)
2

+
∑
l∈L

d(Q(s, ui), l)

+ d(Q(s, ui), p)

where dij is the ground-truth 3D distance between points
i and j on the chessboard, L is the set of lines that corner
ui belongs to, p is the plane that corner ui belongs to, and
d(Q(s, ui), p) measures the distance from the generated 3D
point to the plane.

The extrinsic cost is given by

E(s1, s2, ui) =||R12Q(s2, ui) + t12 −Q(s2, ui)||2

where R12 and t12 represent the rotation and translation
needed to transform a point from the coordinate frame of
3D system s2 to s1.

The major difference between our approach and that of
Le and Ng is that we add one additional term to the
cost function for stereo pairs; specifically, we enforce that

epipolar constraints are satisfied by adding an additional term
to the stereo intrinsic cost function:

I(s, u) =||uT
1 Fu2||2,

where F is the fundamental matrix implied by the current
values of the stereo pair’s intrinsic parameters, u1 are the
homogeneous coordinates of the calibration datum in the
first camera, and u2 are the homogeneous coordinates of the
calibration datum in the second camera.

We obtain the depth intrinsic matrix KDepth from the
infrared intrinsic matrix by subtracting off the offset between
the depth image and infrared image due to the convolution
window used by the internal algorithm. We found the values
suggested by Konolige and Mihelich [35] of -4.8 and -3.9
pixels the x and y directions, respectively, worked well.
Figure 4 shows the results of registering the depth map to the
RGB image using our calibration and also using hardware
registration.

Fig. 4. Comparison of hardware and software registration. The left image
shows a hardware-registered point cloud. Note the bleeding of the cardboard
in the background onto the Pringles can and the low resolution of the color
data. The right image shows a software-registered point cloud using our
calibration. Most of the bleeding of the cardboard onto the can has been
fixed, and we can use higher-resolution color data.

IV. 3D MODEL GENERATION

After calibrating each camera to the reference camera, we
proceed with model generation. At a high level, we:

1) Collect data from each Carmine and Canon as the
turntable rotates through 120 3◦ increments.

2) Filter each Carmine depth map to remove depth dis-
continuities (Section IV-A).

3) Generate point clouds for each Carmine view using
calibration intrinsics.

4) Merge the 5 point clouds for each of the 120 scenes
using calibration extrinsics.

5) Segment the object from the merged cloud (Section
IV-C).

6) Improve the object cloud quality for each of the 120
scenes through plane equalization (Section IV-B).

7) Merge the 120 scenes together to form a single cloud
using calibration extrinsics.

8) Create a mesh via Poisson Reconstruction [36], [37].

Fig. 5. Applying depth discontinuity filtering. Pixels marked in red are
considered unreliable due to either a discontinuity or neighboring pixels
that were not measured by the Carmine depth sensor. Before proceeding,
we discard depth measurements associated with the red pixels.

A. Depth Discontinuity Filtering

After collecting data from each Carmine and Canon sen-
sor, we run a depth discontinuity filtering step as suggested
by Whelan et al. [38], since depth map discontinuities tend
to yield imprecise depth and color measurements. To do so,
we associate each 3 × 3 patch p in the depth image with
a value max{(max p− pmid), (min p− pmid)} where pmid

refers to the center pixel’s depth. We keep all pixels whose
associated patch has a value lesser than some threshold. See
Figure 5 for an example of the pixels eliminated by depth
discontinuity filtering.

B. Plane Equalization

After obtaining a preliminary 3D mesh, we produce a
cleaner cloud through a procedure called plane equalization.
As we collect point clouds, recall that we compute the
transform from the turntable chessboard to the reference
camera via OpenCV’s solvePnP. Experimentally, we notice
slight depth ambiguities when computing these transforms,
evidenced by the non-aligned plane normals and inconsistent
depths presented in Figure 6. Since we know that the
turntable chessboard revolves about a circle roughly hori-
zontal to the ground, we refine each transform’s rotational
component and translational component by (1) computing a
new vector normal to be shared across all chessboards and
(2) enforcing the centers of each chessboard to lie on a circle.

Concretely, given a set T = {(R1, t1), . . . , (Rn, tn)}
of chessboard poses, we produce a refined set T ′ =
{(R′1, t′1), . . . , (R′n, t′n)} of chessboard poses. Note that an
Ri operates on a plane with unit normal k̂ yielding a plane
with unit normal Ri[3], the third column of Ri. Ultimately,
we would like all plane normals to match; to do this, we
compute a unit vector û so as to minimize

∑n
i=1(û ·Ri[3])

2.
We solve for û exactly by setting it to be the least eigenvector
of the covariance of all the Ri[3]s. We then compute each R′i
by multiplying each Ri by the transform that takes Ri[3] to û
via rotation about the axis Ri[3]×û. We next compute each t′i
by projecting each ti onto the least squares circle determined
by {t1, · · · , tn}; this problem can be solved quickly by

Fig. 6. The chessboard poses for each turntable location are shown in
the frame of the reference camera. On the left, the chessboard poses are
determined by solvePnP. On the right, we refine these pose estimates using
the plane equalization method described in Section IV-B. The refined board
poses are significantly cleaner.

projecting {t1, · · · , tn} onto a plane, computing the least
squares circle in the plane’s basis, and projecting each point
onto the resulting circle. In practice, plane equalization runs
in negligible time (< 0.1 s) for n = 120 and yields higher
quality point clouds (see Figure 7).

Fig. 7. Constructed point clouds for one object. On the left, the cloud is
constructed using the raw solvePnP poses; the cloud has multiple shifted
copies of the object due to misalignment. On the right, the cloud is
constructed with the output of the plane equalization procedure; the cloud
is much cleaner and well-aligned.

C. Object segmentation

As discussed above, for a given turntable angle, we
merge the 5 Carmine point clouds into a single cloud using
calibration extrinsics. To segment the object from this cloud,
we first discard all points outside of the Ortery PhotoBench.
We then discard all points below the turntable plane (which
was identified in the previous step), and lastly conduct
agglomerative clustering to remove tiny clusters of points.

D. Accuracy

Although we use a naive approach for building 3D models,
their accuracy is better than the models used by Xie et al.
[1] to obtain state-of-the-art RGBD instance recognition
results. In Figure 8, we give a rough idea of the accuracy
of our 3D models by projecting a representative mesh onto
an image from one of the Canon cameras (which is not

used to build the mesh), showing that the system is well
calibrated and produces reasonable meshes. We expect that
more sophisticated algorithms can produce higher-fidelity 3D
models.

Fig. 8. The 3D mesh is projected onto one of the Canon images.

E. Limitations

Our approach relies solely on point cloud data from the
Carmines when building the 3D mesh models. However,
Kinect-style RGB-D sensors are known to perform poorly for
certain objects, including transparent and highly-reflective
objects, such as the bottle shown in Figure 9. For these
objects, the 3D models may be missing or of poor quality.
However, by incorporating methods that also use RGB data,
we anticipate being able to provide high-quality 3D models
for many of these objects in the future.

Fig. 9. An example object for which Kinect-style RGB-D sensors yield
poor-quality point clouds.

V. DATASET USAGE

We anticipate our dataset to be used for multiple related
computer vision problems, including object instance recogni-
tion, object category recognition, and 3D object model gen-
eration. The dataset, and all code used to generate it, can be
obtained at our website (http://rll.eecs.berkeley.edu/bigbird).

A. Obtaining the Dataset

Due to the large size (and many uses) of the dataset (each
object has roughly three gigabytes of data), it is impractical
to provide a single downloadable file for the entire dataset,
and inconvenient to have a single downloadable file per
object. On our website, we provide an automated way to
download the data for various use-cases. Instructions for
downloading the data are provided on the website. The
settings can be configured to download whichever subset of
the following components are desired:

1) High-resolution (12MP) images (.jpg)
2) Low-resolution Carmine images (.jpg)
3) Raw point clouds (.pcd)
4) Depth maps (.h5)
5) Segmented point clouds (.pcd)
6) Segmentation masks (.pbm)
7) 3D mesh model (.ply)

B. Instance Recognition

A set of test scenes using the objects from the dataset
will be made available on the website. As we collect more
objects, we will collect more test scenes. In order to facilitate
meaningful comparison of similar algorithms, we plan to
collect and record results of different methods on the same
subset of the test data on the website.

C. 3D Model Generation

Although we have used a very naive approach to gen-
erating 3D models (i.e. concatenating all point clouds and
running Poisson reconstruction), the data is well-suited for
evaluating algorithms for generating 3D models of objects
from RGB and RGB-D sources. The current release of the
data does not contain ground-truth object models; however,
we plan to obtain 3D-printed models and provide data for
them. As more sophisticated algorithms are used on our data,
we plan to provide better 3D models as well.

VI. CONCLUSIONS

We believe this dataset will significantly accelerate
progress in robotic perception, especially the instance recog-
nition problem. We also believe it can lead to benchmarks for
a variety of areas from computer graphics, computer vision,
and robotics, including 3d object reconstruction, recognition,
and grasping.

All of our code and data, including calibration data, object
instance data, and test scenes are available at the following
URL: http://rll.eecs.berkeley.edu/bigbird.
We plan to continue adding to our dataset; we invite others
to request and/or send us objects which we have not yet
scanned. Please contact us regarding such requests.

ACKNOWLEDGEMENTS

This work is supported in part by ONR Grant #N00014-
12-1-0756 and by ONR YIP Award #N00014-13-1-0570.
Arjun Singh is supported by an NDSEG Fellowship. Karthik
Narayan is supported by an NSF Graduate Fellowship. We
thank Ortery Technologies for their support.

REFERENCES

[1] Ziang Xie, Arjun Singh, Justin Uang, Karthik S. Narayan, and Pieter
Abbeel. Multimodal blending for high-accuracy instance recognition.
In IROS, 2013.

[2] J. Tang, S. Miller, A. Singh, and P. Abbeel. A textured object
recognition pipeline for color and depth image data. In ICRA, 2012.

[3] N. Vaskevicius, K. Pathak, A. Ichim, and A. Birk. The jacobs robotics
approach to object recognition and localization in the context of the
icra’11 solutions in perception challenge. In ICRA, 2012.

[4] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database, 1998.
[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative

visual models from few training examples: An incremental bayesian
approach tested on 101 object categories. Comput. Vis. Image Underst.,
106(1):59–70, 2007.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010.

[7] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical report, 2007.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In ICCV, 2005.

[10] Willow Garage. Solutions in perception challenge, May 2011.
[11] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and

T. Darrell. A category-level 3-d object dataset: Putting the kinect to
work. 2011.

[12] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-
view rgb-d object dataset. In ICRA, 2011.

[13] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[14] J. Sturm, J. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In IROS, 2012.

[15] D. Cremers and K. Kolev. Multiview stereo and silhouette consistency
via convex functionals over convex domains. 33, 2011.

[16] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view
stereopsis. PAMI, 32(8), 2010.

[17] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards
internet-scale multi-view stereo. In CVPR, 2010.

[18] J. Guillemaut and A. Hilton. Joint multi-layer segmentation and
reconstruction for free-viewpoint video applications. Int. J. Comput.
Vision, 93(1):73–100, 2011.

[19] Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The
MOPED framework: Object Recognition and Pose Estimation for
Manipulation. 2011.

[20] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The kit object
models database: An object model database for object recognition,
localization and manipulation in service robotics. The International
Journal of Robotics Research, 31(8):927–934, 2012.

[21] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera. In UIST, 2011.

[22] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In ISMAR, 2011.

[23] Kaess M. Fallon M. F. Johannsson H. Leonard J. J. McDonald J. B.
Whelan, T. Kintinuous: Spatially extended kinectfusion. In RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
2012.

[24] Q. Zhou, S. Miller, and V. Koltun. Elastic fragments for dense scene
reconstruction. In ICCV, 2013.

[25] C. D. Herrera, J. Kannala, and J. Heikkilä. Accurate and practical
calibration of a depth and color camera pair. In CAIP, 2011.

[26] C. Zhang and Z. Zhang. Calibration between depth and color sensors
for commodity depth cameras. In ICME, 2011.

[27] A. Geiger, F. Moosmann, O. Car, and B. Schuster. A toolbox for
automatic calibration of range and camera sensors using a single shot.
In ICRA, 2012.

[28] Z. Zhang. Flexible camera calibration by viewing a plane from
unknown orientations. In ICCV, 1999.

[29] Q. V. Le and A. Y. Ng. Joint calibration of multiple sensors. In IROS,
2009.

[30] Jan Smisek, Michal Jancosek, and Tomas Pajdla. 3d with kinect. In
Consumer Depth Cameras for Computer Vision, pages 3–25. Springer,
2013.

[31] Michael Warren, David McKinnon, and Ben Upcroft. Online Cali-
bration of Stereo Rigs for Long-Term Autonomy. In International
Conference on Robotics and Automation (ICRA), Karlsruhe, 2013.

[32] D Alex Butler, Shahram Izadi, Otmar Hilliges, David Molyneaux,
Steve Hodges, and David Kim. Shake’n’sense: reducing interference
for overlapping structured light depth cameras. In Proceedings of
the 2012 ACM annual conference on Human Factors in Computing
Systems, pages 1933–1936. ACM, 2012.

[33] James George, Alexander Porter, Jonathan Minard, and Mike Heavers.
Rgbd toolkit, 2013.

[34] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.
[35] K. Konolige and P. Mihelich. Technical description of kinect calibra-

tion, 2013.
[36] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruc-

tion. In SGP, 2006.
[37] P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-source

3d mesh processing system. ERCIM News, 2008(73), 2008.
[38] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard,

and John McDonald. Robust tracking for real-time dense rgb-d
mapping with kintinuous. 2012.

