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Abstract— We consider the problem of building high-quality
3D object models from commodity RGB and depth sensors.
Applications of such a database include instance and object
recognition, robot grasping, virtual reality, graphics, and online
shopping. Unfortunately, modern reconstruction approaches
have difficulties in reconstructing objects with major trans-
parencies (e.g., KinectFusion [22]) and/or concavities (e.g.,
visual hull). This paper presents a method to fuse visual hull
information from off-the-shelf RGB cameras and KinectFusion
cues from commodity depth sensors to produce models that are
substantially better than either approach on its own. Extensive
experiments on the recently published BigBIRD dataset [25]
demonstrate that our reconstructions recover more accurate
shape and detail than competing approaches, particularly
on challenging objects with transparencies and/or concavities.
Quantitative evaluations indicate that our approach consistently
outperforms competing methods and achieves under 2 mm
RMS error. Our code is available for download online at
http://rll.berkeley.edu/icra2015modelquality.

I. INTRODUCTION AND RELATED WORK

The arrival of the Kinect has sparked large interest in
3D scanning. A highly accurate 3D scanner could have
wide impacts in robot vision, particularly instance and object
recognition and pose detection, robot grasping, virtual reality,
graphics, and online shopping. Variants on the recently
proposed KinectFusion algorithm have become particularly
popular in reconstruction due to the method’s ability to
reconstruct objects in realtime while recovering surface
details [22], [30]. As a depth sensor receives streaming
depth images, KinectFusion (1) calibrates the current depth
map using frame-to-model iterative closest point (ICP), (2)
updates a truncated signed distance function (TSDF) that
stores averaged depth readings, and (3) constructs a mesh
using the marching cubes algorithm [19]. Recently published
variants of KinectFusion discuss methods to account for the
nonlinear distortions introduced by consumer-grade depth
sensors [32], [33], [26].

While KinectFusion primarily uses depth cues in recon-
struction, popular stereo techniques employ color cues in re-
construction. In particular, multiview stereo approaches cur-
rently obtain state-of-the-art results in reconstruction purely
from multiple calibrated RGB images [12], [6], [13], [16],
[21]. Most such methods produce a 3D point cloud, which
is then used to compute a mesh representing the scene.
There exist several approaches to compute this point cloud,
such as plane-sweeping [8], stereo-matching [28], and patch
growing [24].

In reconstructing a single object, one popular approach
involves constructing the object’s visual hull and iteratively
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Fig. 1. Collections of scanned objects reconstructed from (a) the method in
this paper, (b) KinectFusion [22], and (c) the previous approach in [25], and
(d) colored versions of these objects. Back row, left to right: VO5 volumizing
shapoo, Listerine, Softsoap Hand Soap (Coconut and Warm Ginger), red
cup, Windex. Front row, left to right: Pepto Bismol, Crest Complete Minty
Fresh Toothpaste, Dove Soap. Note that this image does not represent a
scanned scene, but a collection of individually scanned objects to conserve
space.

deforming the hull towards multiview-stereo-based point
clouds to extract fine details [12], [6], [11]. In particular,
the visual hull attempts to reconstruct an object purely from
silhouettes captured from multiple views [4]. Noticing that
each object silhouette backprojects to a cone, the visual
hull intersects these cones to form a description of the real
object’s shape. Because the visual hull of an object is the
envelope of all its possible circumscribed cones, the object
must fully lie within its visual hull (see [23] for a proof and
Figure 3 for a visualization in 2D).

Although multi-view stereo, visual hull, and KinectFusion-
style approaches perform well in specific settings, they have
pitfalls. While multi-view stereo approaches perform very
well with highly-textured objects, the poor clouds resulting
from lack of texture can lead to sparse and inaccurate
clouds [12], [6], [13]. While the visual hull can recover
the rough shape of an object even with objects with little
texture, it fails to recover concavities in an object, which
cannot be represented via calibrated silhouette data [23].
While KinectFusion-style approaches can perform well in
the “concavity and low-texture” regime, they fail when
working with objects that are translucent, transparent, or
highly specular; the visual hull can provide better shape
estimates here [22], [26].

Little work has been published on combining each
method’s strengths. Steinbrucker et. al. [27] discuss an ap-

http://rll.berkeley.edu/icra2015modelquality


(a) Ortery Photobench, Perspective
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Fig. 2. Our scanning setup consisting of (a), (c) the Ortery Photobench and
(b) 5 Canon Rebel t3i + Carmine 1.09 units mounted together. We described
a method to jointly calibrate all 10 sensors in [25].

proach to jointly use RGB with depth data to improve camera
calibration associated with KinectFusion, resulting in higher
quality scene scans. Xu et. al. [31] present an approach that
closely refines an object’s depth data boundaries purely using
silhouette information. As these approaches rely heavily on
existing depth data from the Kinect, they do not work well
in reconstructing objects that are translucent, transparent, or
highly specular. Another work discusses a method to improve
Kinect depth reading fidelity by fusing stereo information
from both the IR and RGB sensors; although this approach
reconstructs bits and pieces of translucent, transparent, and
specular objects, the improved data alone is not sufficient to
create high quality 3D models due to the large variances in
depth estimates [7].

Contributions. This paper presents a reconstruction
method that capitalizes on the strengths of the RGB and
depth modalities. Specifically, we take in as input a set
of calibrated RGB and depth images and produce a high-
resolution object mesh. By fusing silhouette and depth infor-
mation, our method recovers detailed models for challenging
objects that are difficult to reconstruct using either modality
alone. We evaluate our results on the BigBIRD dataset,
discussed in Section II. Shown in Figure 1, our method
outperforms competing approaches including the original
BigBIRD models [25] and KinectFusion [22].

II. THE BIGBIRD DATASET

The BigBIRD dataset [25] consists of high quality scanned
data for 125 household objects. The data collection system
consists of 5 high resolution (12.2 MP) Canon Rebel T3
DSLR cameras and 5 PrimeSense Carmine 1.09 short-range
depth sensors. After mounting each Carmine to a DSLR
using a platform designed by RGBDToolkit [1], each DSLR
is mounted to an arm (the Ortery MultiArm 3D 3000) (see
Figures 2b, c).

Data collection for a single object entails placing an object
on the turntable (the Ortery Photobench 260) (Figure 2a)
and running a single command; the full process is otherwise
automated. The turntable rotates in increments of 3 degrees
while each of the 5 Canon Rebel T3/Carmine units captures

Camera focus
Image plane

Visual hull
True object

Visual cone

Fig. 3. The red, green, blue, and orange have different views of the solid
green object, and thus different silhouettes. Intersecting the cones formed by
the silhouettes forms the visual hull, an approximation to the true object’s
surface. Although the visual hull provides better surface approximations
as the number of cameras increases, the visual hull cannot recover the
concavity in the true object.

RGB/depth images. This yields a total of 600 point clouds,
600 high-resolution, and 600 low-resolution RGB images
from 5 polar ×120 azimuthal views. The 5 cameras are
calibrated with each other by placing a chessboard in various
orientations, detecting chessboard corners, and running a
global bundle adjustment optimizer (described in [25]). Cal-
ibrating the top camera with the turntable involves running
another bundle adjustment optimizer using a chessboard on
the turntable.

III. UNIFYING IMAGE AND RANGE SENSOR DATA

At a high level, our reconstruction pipeline (1) computes
object segmentations from the high resolution RGB images
(Section III-A), (2) computes a visual hull using the seg-
mented, calibrated RGB images (Section III-B, III-C), (3)
computes a KinectFusion model using the calibrated depth
data (Section III-C), (4) refines the original raw depth maps
using the visual hull and KinectFusion models and merges
these refined depth maps into a point cloud (Sections III-D,
III-E), and (5) forms an object mesh by fusing this merged
point cloud with the visual hull (Section III-F).

Our experiments (Section IV) illustrate that our approach
capitalizes on the strengths of both the KinectFusion and the
visual hull approaches to recover accurate shape models even
for objects with concavities and translucent parts.

A. Computing Object Segmentations

Given an object, we first describe a method to extract
silhouettes for each of its 600 high-resolution RGB images,
which we use to compute the visual hull. We first manually
segment only the first view of each of the 5 Canon DSLR
cameras. Specifically, after running Simple Linear Iterative
Clustering (SLIC) [2] to tile an image with superpixels, we
manually select the superpixels belonging to the object. The
interface, with a sample object, is shown in Figure 4(a);
users select computed SLIC superpixels (marked with yellow
boundaries) belonging to the object. This process takes under
2 minutes per object (for all 5 segmentations) and is the only
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Fig. 4. The interactive segmenter, (a), original images, (b-d top row), and
automatically computed segmentations learned from manual segmentations
(b-d bottom row). After tiling the image with superpixels using SLIC
(separated by yellow boundaries in (a)), users can quickly select superpixels
belonging to the object (pink regions). Selecting the last orange superpixel
in (a) would complete the segmentation process. Although our learned
background models misclassify chessboard regions in (b-d) and produces
noisy segmentations for translucent objects (e.g., the Softsoap dispenser
pump), our reconstruction scheme still recovers very good object shape
(Section IV). Best viewed in color.

manual step in our pipeline. Note that the user only has to
manually segment 5 objects, and not all 600; we show how to
automatically compute the rest of the segmentations below.
In particular, we use 5 segmentations, one per DSLR camera.

Using only 5 manually segmented images, we can recover
segmentations for all views: per manual segmentation, we
construct a dataset {(pixi,yi)}i where yi = 1 denotes an
object-pixel and yi = 0 denotes a background pixel, and pixi
denotes the color of the pixel in LAB space. We run k-
means (k = 20) on the background pixels, i.e. {pixi|yi = 0},
initialized with k-means++ [3]. For all pixels in the manual
segmentation, we store the Euclidean distance to the closest
mean; next, we use the manual labels to compute a threshold
T such that pixels closer than T to a cluster center are
classified as “background” while the rest are classified as
“foreground.” Specifically, we choose T by maximizing the
number of correctly predicted pixels; because the number of
pixels is on the order of a few million, we can optimally
select T by considering all possible distances that the pixels
take on.

For the remaining 119 images captured from each of the 5
cameras, we then use the corresponding background model to
classify each pixel as object or background. Finally, we mark
superpixels as object-superpixels if they contain greater than
30% coverage of object-pixels, and background-superpixels
otherwise. Figures (b-d) show examples of marked object
superpixels with a magenta tint; we deliberately use a low
threshold of 30% to recover object superpixels belonging to
white/translucent/transparent objects. Though this introduces
false positive object superpixels (e.g. see marked chessboard
superpixels in (b-d)), the visual hull carves these regions
away, as the same false-positive superpixel rarely appears in
many camera views. Armed with these silhouettes and the
calibration information per image provided in the BigBIRD

Fig. 5. Comparisons of the hard visual hull (left two objects), using the
method in [9] and the soft visual hull, using the method in Section III-B
(right two objects).

dataset, we can then construct the visual hull.

B. Computing Visual Hull Models

Many variations on computing visual hulls exist [9], [18],
[20], [17], [10]. In this paper, we consider the method
discussed in [9], which offers good tradeoffs between speed
and accuracy: we (1) define a function F(x) = 1, if x ∈ R3

falls in all silhouettes, and 0 otherwise, (2) compute an
initial point x0 such that F(x0) = 1, i.e. an initial point
that lies on the visual hull, and (3) run an implicit surface
polygonizer to recover the visual hull mesh, using x0 as
an initialization. We can compute x0 by considering the
3D back-projections of the bounding boxes per silhouette;
repeatedly sampling points within the intersection of these
bounding boxes eventually yields a valid x0 (see [6] for
how to compute this intersection). For step (3), we use the
publicly available Blumenthal polygonizer with marching
tetrahedra [5], [29].

This visual hull approach leads to excessive object carving
arising from object pixels being labeled as background pixels
during segmentation (see Figure 5, left objects). Such errors
typically arise when the object either has bright, white
colors or white specularities near segmentation boundaries.
To ameliorate this problem, we account for silhouette noise
by instead polygonizing the surface G(x) = 1 if x ∈R3 falls
in 1− ε of all silhouettes, and 0 otherwise (we set ε = 0.1
in our experiments).

Despite being a crude approximation, the right two objects
in Figure 5 demonstrate that this approach works well in
practice; the hard visual hull recovers finer surface detail
for the cup, but heavily over-carves the Listerine bottle
due to segmentation errors. The soft visual hull forgives
the segmentation errors in the Listerine bottle that cause
excessive carving, but smooths the cup’s surface details. We
use the soft visual hull, as it generally conforms better to an
object’s shape. As expected, both methods fail to recover the
cup’s concavity.

C. Computing Calibrated KinectFusion Models

We can jointly use the depth camera data to recover object
concavities; since individual depth maps are inherently noisy,
we fuse the depth maps into a single mesh using a variant
of the KinectFusion algorithm. The KinectFusion algorithm
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Fig. 6. Challenges associated with the depth modalities we attempt to blend.
Point clouds recovered from KinectFusion meshes can often have large gaps
of missing space [22]. These gaps could be misleading due to missing
depth readings arising from object transparencies (see (a), featuring the
KinectFusion mesh vertices of the translucent Palmolive dishwashing soap).
Gaps could also be legitimate, recovering object concavities such as the
cup’s concavity in (c). Although the visual hull can fill in illegitimate gaps,
it can also introduce hallucinated points which cover important concavities,
such as the cup’s concavity in (b). Section III-D and III-E discuss methods to
capitalize on each modality’s strengths and reason through the inaccuracies
that each modality introduces.

assigns poses to each incoming camera frame via frame-
to-model, point-to-plane ICP [22]; because KinectFusion
requires slow camera pose movements, and the BigBIRD
dataset has 5 cameras in relatively far away locations (see
Figure 2c), we use the camera poses that the BigBIRD
dataset provides per Carmine rather than frame-to-model
ICP. Separate experiments indicated that the provided poses
provide more reliable poses over those provided by frame-
to-model ICP (particularly in cases where depth maps have
gaps due to transparencies). The provided poses also allow
us to use depth information from all 5 cameras. We employ
a CPU implementation of KinectFusion that represents the
TSDF structure using an octree; specifically, we adopt the
implementation used in [33].

D. Refining the Original Depth Maps

To ultimately fuse the visual hull and KinectFusion mod-
els, we aim to construct a dense cloud whose points lie on
the surface of the object and deform the visual hull towards
this cloud. In particular, this dense cloud’s points will be
a subset of the union of the visual hull and KinectFusion
mesh vertices. Selecting this subset is nontrivial, since the
visual hull introduces hallucinated vertices, e.g., the top
of the red cup (Figure 6b). Further, KinectFusion models
can contain large empty spaces in regions with few depth
readings (Figure 6a). Exacerbating the problem, gaps in the
KinectFusion model could either be due to legitimate gaps
such as object concavities (Figure 6c) or illegitimate gaps due
to object transparencies (Figure 6a). Ultimately, we construct
the desired cloud by refining the raw depth maps.

We summarize our algorithm to fuse these depth cues in
Algorithm 1. We now explain how Algorithm 1 assigns a
refined depth to a single pixel (i, j) given z-buffered depths
for the visual hull and KinectFusion maps vh and k f and
a raw depth map raw, for a single camera c in angle a.
The following 4 cases correspond to the 4 cases described
in Algorithm 1.

Algorithm 1 Refining the Original Depth Maps
C← list of depth cameras whose depth maps to refine
A← list of turntable angles per depth camera
V H← the soft visual hull mesh
KF ← the KinectFusion mesh
cloud← empty point cloud
for c in C do

for a in A do
raw← raw depths for camera c, angle a
vh← V H’s z-buffered depths in camera c, angle a
k f ← KF’s z-buffered depths in camera c, angle a
nr← number of rows in raw
nc← number of columns in raw
re f ined← empty array with nr rows and nc cols
for 0≤ i < rows do

for 0≤ j < cols do
if vh[i, j] = ∞ then

re f ined[i, j] = ∞ . Case 1
else if raw[i, j] = ∞ or k f [i, j] = ∞ then

re f ined[i, j] = vh[i, j] . Case 2
else if |vh[i, j]− k f [i, j]|< 1 mm then

re f ined[i, j] = vh[i, j] . Case 3
else . Case 4

re f ined[i, j] = max{vh[i, j],k f [i, j]}
end if

end for
end for
newcloud← point cloud generated from re f ined
cloud.appendPointsNotAtInfinity(newcloud)

end for
end for
return cloud

Case 1: vh does not project onto (i, j). We assume that
the recovered mesh strictly lies within the visual hull, so if
vh[i, j] = ∞, we use a refined depth of ∞. The remainder of
the cases assume that vh projects onto (i, j).

Case 2: Either raw or k f has a missing depth at (i, j).
Because vh projects onto (i, j), Algorithm 1 interprets this
case as the Carmine missing readings due to transparencies.
For example, this happens for the red point in the second row
of Figure 7, the translucent Palmolive dishwashing liquid,
where the soft visual hull is reliable while the KinectFusion
and raw depth maps have missing depths. In this case,
Algorithm 1 prescribes returning the visual hull’s depth.

For the blue point in the same row, the raw depth map
returns a missing depth while the KinectFusion mesh actually
returns a depth reading; note that the KinectFusion depth
reading is spurious since the depth reading represents a
point that actually lies “inside” the object rather than on the
object’s surface. Specifically, the KinectFusion mesh returns
a false depth reading here, since this point is directly visible
to the camera when it isn’t supposed to be (namely because
transparent surfaces are not reconstructed). According to
Algorithm 1, we return the visual hull’s depth, as desired.

Case 3: vh and k f return readings closer than 1 mm. In



(a) Object color images (b) Raw depth maps (c) KinectFusion meshes (d) Soft visual hull meshes (e) Our method

Fig. 7. Three concrete cases of the intuition behind merging visual hull and KinectFusion depth information. Section III-D explains how Algorithm 1
operates on (1) the red corresponding points in the first row (Pepto Bismol, a simple, opaque object), (2) the red and blue corresponding points in the
second row (Palmolive dishwashing container, an object with major translucencies), and (3) the red and blue corresponding points in the third row (black
pot, an object, an object with a major concavity). Our method takes the best pieces of the KinectFusion and soft visual hull meshes; this is particularly
evident in the third row, where our method recovers the pot’s concavity from the KinectFusion mesh and the refined handle from the soft visual hull.

this case, we opt to use vh’s depths, since surfaces recovered
by the visual hull tend to be more refined. For example,
shown in the first row of Figure 7, the KinectFusion and soft
visual hulls for the Pepto Bismol container are both fairly
reliable. Algorithm 1 returns the visual hull reading for the
red point.

Case 4: vh and k f return readings farther than 1
mm. In this final case, we opt to return the maximum
depth between vh and k f , as this likely implies the presence
of a concavity. We address this case in the third row of
Figure 7, which presents a black pot with a large concavity.
In the red point, both KinectFusion and soft visual hulls
return valid depth readings, but these readings differ by more
than 1 mm. Taking the maximum depth reading gives us
the KinectFusion depth, allowing us to properly recover the
concavity.

Algorithm 1 opts to choose vh depths for the blue point,
which falls under Case 3. This leads to a more refined handle,
showing that Algorithm 1 can pick and choose parts of vh
and k f based on reliability.

E. Eliminating Hallucinated Points

Algorithm 1 has a shortcoming, namely that it always
assigns a finite depth to points that fall within vh. Due to
segmentation errors and the soft visual hull threshold, it is
possible for points to fall within the soft visual hull, but not
fall within the true object. Because the Carmine and raw
depth maps indicate such points to be outside the object,
Algorithm 1 treats these hallucinated points as part of Case
2, generating hallucinated points. As an example, Algorithm
1 frequently hallucinates points where the visual hull fills in
concavities (see Figure 8). Figure 9 presents a visualization

(a) Pot, with hallucinated points (b) Pot, hallucinated points removed

(d) Cup holder, hallucinated points removed(c) Cup holder, with hallucinated points

Fig. 8. Point clouds of a black pot (a) immediately after applying Algorithm
1 and (b) after applying our hallucination removal scheme. We similarly
show point clouds of an object with more complex concavities (a paper cup
holder) in (c) and (d). See Figure 11 for color images of these objects.

for why this happens for a cup: camera A’s cone does not
fully carve away the top of the cup, leaving the sliver of
points covering the concavity.

We eliminate hallucinated points as follows: for each point
P generated by the visual hull in the cloud generated by
Algorithm 1, project P onto each refined depth map D. If
P’s depth in D’s frame is strictly smaller than the current
depth value in D, then discard P.

Figure 9 explains why this method works: camera A
introduces a hallucinated point at the green dot. We can use
camera B to resolve this discrepancy; projecting the green dot
onto camera B’s image plane shrouds the purple point, which
camera B originally sees with Algorithm 1 (see Camera B’s
refined depth map). Eliminating this green dot resolves the
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Fig. 9. Camera A’s viewing cone does not fully carve away the visual
hull, leaving a sliver of hallucinated points; the green dot shows a sample
hallucinated point (see Camera A’s refined depth map). Discussed in
Section III-E, the existence of the purple dot along the orange ray allows
us to detect the green dot as a hallucinated point.

contradiction that arises from the purple dot indicating free
space along the orange ray.

Because we assume that the Carmines do not usually
hallucinate poins, we iterate only through points generated
by the visual hull. Further, as long as the KinectFusion
model provides depth readings in concave regions of the
object, the hallucinated points that “cover up” the concavity
will be eliminated. See Figure 8b, d for merged clouds
after hallucination removal of two sample objects. Finally, to
remove stray points in this de-hallucinated cloud, we remove
all points that do not have at least 5 neighbors within a radius
of 1 mm.

F. Fusing the Unified Cloud and Soft Visual Hull

We now fuse the soft visual hull computed in Section III-B
and “de-hallucinated” cloud computed in Section III-E into
a single model. Similar to the visual hull formulation, for
x ∈ R3, we define a function F(x) = 1 if x projects within
all silhouettes and x’s nearest neighbor to a point in the
de-hallucinated cloud lies within a maximum distance r = 1
mm. After finding an initial x0 on the surface by repeatedly
sampling from the intersection of the back-projected silhou-
ette bounding boxes, we run the Bloomenthal polygonizer to
extract a mesh.

In practice, the polygonizer generates many triangles with
poor aspect ratio, e.g. slivers.1 Triangles with aspect ratios
close to 1 are desirable, since this leads to cleaner meshes
that are more easily editable in 3D software due to their
connectivity properties; not explored in this paper, this also
leads to cleaner texture maps [6]. To improve triangle aspect
ratios while losing little surface detail, we alternate between
(1) applying

√
3-subdivision without smoothing [15] and (2)

applying an edge decimation procedure. Figure 10 shows
a sample mesh before and after two iterations of this
subdivision-decimate process.

1The aspect ratio of a triangle is defined as the ratio of the circumradius
to twice the inradius; e.g., the aspect ratio of an equilateral triangle is 1.

(a) Post-decimation

(b) Pre-decimation

Fig. 10. Zooms (a) and (b) are meshes obtained after fusing together
the visual hull and dense cloud after hallucination removal (Section III-F).
(b) shows the mesh triangles before applying our decimation procedure.
(a) shows the triangles afterwards. Note the substantially improved triangle
quality, without the loss of surface geometry quality.

IV. EXPERIMENTS

Figure 11 presents reconstructions of 19 distinct objects
that fall in 3 categories: (1) simple and easy to reconstruct
(relatively opaque, without concavities), (2) objects with at
least one major concavity, and (3) objects with major translu-
cencies or transparencies. Each row presents a different
object category while each column presents reconstructions
obtained from a different algorithm: the Poisson reconstruc-
tion method from [25] (PR), the hard visual hull method
from [9] (VH), KinectFusion [22] (KF), and our approach.
Images do not represent scanned scenes, but a collection of
individually scanned objects to conserve space.

A. Simple Objects

Our method outperforms the other three competing meth-
ods in reconstructing simple objects. PR and KF tend to
oversmooth surface details; further, neither method produces
satisfactory reconstructions of the crayon. While PR pro-
duces closed meshes, KF often does not, evidenced by the
noisy polygons towards the bottom of the objects. Although
VH recovers the crayon, it overcarves the VO5 shampoo and
Pepto Bismol, and fails to reconstruct the other objects due
to excessive carving.

Our approach preserves the best aspects of each method:
we recover surface details without excessive carving, evi-
denced by the properly reconstructed crayon and cap details
for the Pepto Bismol, spray adhesive, and shampoo, while
retaining closed meshes.

B. Objects with Concavities

In reconstructing concave objects, PR and VH miss surface
details and hallucinate polygons. PR produces hallucinated
polygons that cover concavities for the red cup, paper cup
holder, carrying tote, and black pot as well as extraneous
polygons around the paper plate. Due to excessive carving,
VH fails to recover the paper cup holder, mangles the pot’s
surface, and fails to recover the pot’s handle. KF and our
method both recover all concavities. However, our method
produces more refined models: our pot’s handle is more



(a) PR, simple

(e) PR, concave

(i) PR, translucent

(b) VH, simple (c) KF, simple (d) Ours, simple

(f) VH, concave (g) KF, concave (h) Ours, concave

(j) VH, translucent (k) KF, translucent (l) Ours, translucent

(m) Color images, simple objects (n) Color images, concave objects (o) Color images, translucent objects

Fig. 11. Collections of scanned objects reconstructed by competing methods. Rows 1-3 present objects that (1) are “simple”, i.e. have few concavities,
and are mostly opaque), (2) have major concavities, and (3) have major transparencies/translucencies, respectively. Columns 1-4 present reconstructions
produced by the Poisson reconstruction-based method in the original BigBIRD [25], [14] (PR), the visual hull method in [9] (VH), KinectFusion [22]
(KF), and our approach, respectively. Color images of simple, concave, and translucent/transparent objects are presented in (m)-(n), respectively. Each
image does not present a scanned scene, but a collection of individually scanned objects to conserve space.

clearly defined, and the edges of our objects are not as rough
due to our closed meshes.

C. Objects with Translucencies

PR produces many hallucinations in reconstructing
translucent objects in an effort to reconstruct areas with few
depth points. Unfortunately, this yields nearly unrecogniz-
able reconstructions. Again, VH overcarves objects, entirely
missing 3 objects. For the remaining 3, VH misses the top
halves of the Palmolive and Windex bottles and overcarves
the Listerine bottle. KF recovers bits and pieces of all objects,
but still misses large regions due to the translucencies.

Our method recovers the majority of objects, including
tiny surface details: we recover the opening to the Palmolive
bottle, indentations on the Coca-Cola bottle where the label
is present, and bottle caps of the Coca-Cola and Dragon
Fruit juice bottles, all details on the order of 1 mm or less.
Further, our method properly recovers objects that are white,
with large clear regions, shown by the Softsoap Hand soap
and Bai5 Sumatra Dragon Fruit juice.

Our approach is not perfect however, as it fails to re-
cover regions of the Windex’s pipe and Palmolive bottle.
Our automatic segmentations fail to recover the superpixels
corresponding to these regions, as our segmentation method
classifies the white/translucent colors of the pipes as part of
the background.

D. Quantitative Measurements

Quantitatively measuring errors associated with the Big-
BIRD dataset is nontrivial, as there exists no ground truth
data. We inspect 4 objects that can be decomposed into
a few primitives: a Pringles can, an almonds container, a
Dove soap box, and a 3M spray (Figure 12). We model
the Pringles, almonds, and 3M spray containers using 3
cylinders stacked on each other and the Dove soap box
using a rectangular prism. We determined the appropriate
dimensions per primitive using calipers that are accurate to
0.1 mm. After fitting the appropriate ground truth model to
each reconstructed object via point-to-plane ICP, we obtain
the RMS errors in Table I; we compare our method to the



(a) Almonds Can

(b) Dove Soap Box (c) Pringles Can (d) 3M Spray

Fig. 12. The Almonds Can, Dove Soap Box, Pringles Can, and 3M
spray, which we use for quantitative measurements. We model the Almonds,
Pringles, and 3M Cans using 3 cylinders: the cap, the container, and the
bottom. We model the Dove Soap Box using a rectangular prism.

Primitive Fitting RMS Errors (mm)
PR [25] SVH KF [22] OUR METHOD

Pringles 0.566 0.541 0.850 0.563
Dove Soap 0.995 0.981 1.123 0.948

Almond Can 0.339 0.303 0.662 0.294
3M Spray 2.018 1.971 2.189 1.958

TABLE I
RMS ERRORS FROM FITTING GROUND TRUTH MODELS TO

RECONSTRUCTIONS FROM POISSON RECONSTRUCTION (PR), THE SOFT

VISUAL HULL (SVH), KINECTFUSION (KF), AND OUR METHOD.

soft rather than the hard visual hull, as the latter heavily
overcarves the Dove box and Almond Can. Thanks to our
well-calibrated cameras, most RMS errors are under 2 mm.
In the case of the Dove Soap, Almond Can, and 3M spray
our method produces reconstructions with the least RMSE;
with the Pringles, our method comes in a close second place.

V. CONCLUSION

This paper reasons through the advantages and short-
comings of the KinectFusion and visual hull techniques,
and arrives at a highly effective method to fuse these
models together. Individually, the KinectFusion algorithm
does poorly in reconstructing objects with major translu-
cencies but reconstructs concavities, while the visual hull
does poorly in reconstructing concavities but reconstructs
regions with major translucencies. Our method exploits the
complementary nature of KinectFusion and visual hull to
produce a unified algorithm that properly recovers objects
with concavities and translucencies.
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